This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Mapper

Core Domain
    <dependency>
      <groupId>tw.com.softleader.data.jakarta</groupId>
      <artifactId>specification-mapper</artifactId>
      <version>${specification-mapper.version}</version>
    </dependency>
    

    specification-mapper is a generator for Specifications. It reads the fields from an object and dynamically creates query conditions based on the definitions of the fields’ annotations.

    In addition, specification-mapper-starter provides integration with Spring Boot, allowing you to use it effortlessly in Spring apps without any configuration. We highly recommend checking it out if you are using a Spring Boot application!

    Getting Started

    What we need is to create an instance of SpecMapper, which is the most important class and serves as the API entry point for all specification operations:

    var mapepr = SpecMapper.builder().build();
    

    Next, we define a POJO (Plain Old Java Object) that encapsulates the query conditions, such as:

    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
    }
    

    With this, we can perform the conversion to a Specification. Once we have the Specification, we can query the database using the original approach, for example, through the repository of Spring Data JPA:

    var criteria = new CustomerCriteria();
    criteria.setFirstname("Hello")
    
    var mapper = SpecMapper.builder().build();
    var specification = mapper.toSpec(criteria);
    
    customerRepository.findAll(specification);
    

    The executed SQL will be:

    ... where x.firstname like '%Hello%'
    

    Skipping Strategy

    In the fields of the POJO, if any of the following conditions are met, they will be ignored during the conversion process:

    • No Spec Annotation is attached.
    • The value is null.
    • If the type is Iterable and the value is empty.
    • If the type is Optional and the value is empty.
    • If the type is CharSequence and the length of value is 0.
    • If the type is Array and the length of value is 0.
    • If the type is Map and the value is empty.

    For example, after constructing the following POJO, if no values are set and it is directly converted into a Specification for querying:

    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
      
      String lastname = "Hello";
       
      @Spec
      String nickname = "";
      
      @Spec(GreaterThat.class)
      Optional<Integer> age = Optional.empty();
      
      @Spec(In.class)
      Collection<String> addresses = Arrays.asList();
    }
    
    var mapper = SpecMapper.builder().build();
    customerRepository.findAll(mapper.toSpec(new CustomerCriteria()));
    

    The executed SQL in the above example will not have any filtering conditions.

    If you are using the Builder Pattern (e.g., Lombok’s @Builder), please pay special attention to the default values set in the builder.

    If you want to customize the logic for skipping, you can implement a SkippingStrategy and pass it when constructing a SpecMapper:

    var mapper = SpecMapper.builder()
          .defaultResolvers()
          .skippingStrategy(fieldValue -> {
            // Determine whether to skip the field value and return a boolean
          })
          .build();
    

    Simple Specifications

    You can use @Spec on fields to define the implementation of the Specification, Equals spec is the default:

    @Spec // Equivalent to @Spec(Equals.class)
    String firstname;
    

    The corresponding entity path will default to the field name, but you can also set @Spec#path to change it:

    @Spec(path = "...") // Takes precedence if defined
    String firstname; // Defaults to the field name
    

    Built-in Simple @Spec

    Here is a list of the built-in types for @Spec:

    SpecSupported field typeSampleJPQL snippet
    EqualsAny@Spec(Equals.class) String firstname;... where x.firstname = ?
    NotEqualsAny@Spec(NotEquals.class) String firstname;... where x.firstname <> ?
    BetweenIterable of Comparable
    (Expected exact 2 elements in Iterable)
    @Spec(Between.class) List<Integer> age;... where x.age between ? and ?
    LessThanComparable@Spec(LessThan.class) Integer age;... where x.age < ?
    LessThanEqualComparable@Spec(LessThanEqual.class) Integer age;... where x.age <= ?
    GreaterThanComparable@Spec(GreaterThan.class) Integer age;... where x.age > ?
    GreaterThanEqualComparable@Spec(GreaterThanEqual.class) Integer age;... where x.age >= ?
    AfterComparable@Spec(After.class) LocalDate startDate;... where x.startDate > ?
    BeforeComparable@Spec(Before.class) LocalDate startDate;... where x.startDate < ?
    IsNullBoolean@Spec(IsNull.class) Boolean age;... where x.age is null (if true)
    ... where x.age not null (if false)
    NotNullBoolean@Spec(NotNull .class) Boolean age;... where x.age not null (if true)
    ... where x.age is null (if false)
    LikeString@Spec(Like.class) String firstname;... where x.firstname like %?%
    NotLikeString@Spec(NotLike.class) String firstname;... where x.firstname not like %?%
    StartingWithString@Spec(StartingWith.class) String firstname;... where x.firstname like ?%
    EndingWithString@Spec(EndingWith.class) String firstname;... where x.firstname like %?
    InIterable of Any@Spec(In.class) Set<String> firstname;... where x.firstname in (?, ?, ...)
    NotInIterable of Any@Spec(NotIn.class) Set<String> firstname;... where x.firstname not in (?, ?, ...)
    TrueBoolean@Spec(True.class) Boolean active;... where x.active = true (if true)
    ... where x.active = false (if false)
    FalseBoolean@Spec(False.class) Boolean active;... where x.active = false (if true)
    ... where x.active = true (if false)
    HasLengthBoolean@Spec(HasLength.class) Boolean firstname;... where x.firstname is not null and character_length(x.firstname)>0 (if true)
    ... where not(x.firstname is not null and character_length(x.firstname)>0) (if false)
    HasTextBoolean@Spec(HasText.class) Boolean firstname;... where x.firstname is not null and character_length(trim(BOTH from x.firstname))>0 (if true)
    ... where not(where x.firstname is not null and character_length(trim(BOTH from x.firstname))>0) (if false)

    In order to facilitate the usage for those who are already familiar with Spring Data JPA, the specs are named as closely as possible with Query Methods

    Negates the @Spec

    You can use @Spec#not to indicate the inverse condition. By default, it is set to false, but if you set it to true, the result will be inverted.

    For example, if you want to use Between to find data outside of a certain range, the example would be as follows:

    @Spec(value = Between.class, not = true)
    Collection<Integer> age;
    

    The executed SQL will be:

    ... where x.age not between ? and ?
    

    Extending Simple @Spec

    @Spec can be easily extended by implementing SimpleSpecification<T> and providing the required constructor. These classes can then be used in @Spec annotations.

    For example, let’s say we have a Customer entity with the following fields:

    • firstname (String): Name of the person (can be duplicated)
    • createdTime (LocalDateTime): Creation time (unique)

    We want to retrieve the data for each unique name with the latest creation time. To achieve this, we plan to write a subquery. The complete example is as follows:

    First, we implement SimpleSpecification<T> and provide the required constructor:

    public class MaxCustomerCreatedTime extends SimpleSpecification<Customer> {
    
      // This is the required constructor, the modifier can be public, protected, default, or private
      protected MaxCustomerCreatedTime(Context context, String path, Object value) {
        super(context, path, value);
      }
    
      @Override
      public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query, CriteriaBuilder builder) {
        // The following provides an example implementation for the subquery
        var subquery = query.subquery(LocalDateTime.class);
        var subroot = subquery.from(Customer.class);
        subquery.select(builder.greatest(subroot.get("createdTime").as(LocalDateTime.class)))
                .where(builder.equal(root.get((String) value), subroot.get((String) value)));
        return builder.equal(root.get("createdTime"), subquery);
      }
    }
    

    The MaxCustomerCreatedTime class we implemented above can now be used in @Spec. Next, we define the POJO and convert it to a Specification:

    @Data
    public class CustomerCriteria {
    
      @Spec(MaxCustomerCreatedTime.class)
      String maxBy;
    }
    
    var criteria = new CustomerCriteria();
    criteria.setMaxBy("firstname");
    
    var spec = mapper.toSpec(criteria, Customer.class);
    repository.findAll(spec);
    

    The executed SQL will be:

    ... where customer0_.created_time=(
      select max(customer1_.created_time) from customer customer1_ 
      where customer0_.firstname=customer1_.firstname
    )
    

    Combining Specs

    You can use @And or @Or at the class level to combine multiple specifications within an object. The default combination is @And.

    For example, if you want to change it to @Or, the code would be as follows:

    @Or // Default is @And if not specified
    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
      
      @Spec(Like.class)
      String lastname;
    }
    

    The executed SQL will be:

    ... where x.firstname like %?% or x.lastname like %?% 
    

    Specify Combining Type on Field

    You can also use @And or @Or annotations on fields to control how an individual field is combined with other fields. Here’s an example:

    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
      
      @Spec(Like.class)
      String lastname;
    
      @Or
      @Spec(value = After.class, not = true)
      LocalDate birthday;
    }
    

    The executed SQL will be:

    ... where (x.firstname like ?) and (x.lastname like ?) or x.birthday<=?
    

    Note that the fields are combined in the order they are declared, and SQL has operator precedence. Please ensure that the combination and the result align with your expectations.

    For example, if we adjust the field order in the above example:

    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
      
      @Or
      @Spec(value = After.class, not = true)
      LocalDate birthday;
      
      @Spec(Like.class)
      String lastname;
    }
    

    The executed SQL will be:

    ... where (x.firstname like ? or x.birthday<=?) and (x.lastname like ?)
    

    Nested Specs

    You can use @NestedSpec on a field to instruct SpecMapper to combine specifications with the nested object. There is no level limitation, so you can keep going deeper!

    For example, let’s say we have a shared AddressCriteria POJO, and we want to include it in other POJOs. The code would look like this:

    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
      
      @NestedSpec
      AddressCriteria address;
    }
    
    @Or
    @Data
    public class AddressCriteria {
    
      @Spec
      String county;
      
      @Spec
      String city;
    }
    

    The executed SQL will be:

    ... where x.firstname like %?% and ( x.county=? or x.city=? )
    

    Specify Combining Type on Nested Object

    You can also declare @And or @Or on fields within the nested object to control how the result is combined with other fields. For detailed information, please refer to Specify Combining Type on Field.

    Here’s an example:

    @Data
    public class CustomerCriteria {
    
      @Spec(Like.class)
      String firstname;
      
      @Or
      @NestedSpec
      AddressCriteria address;
    }
    
    @Data
    public class AddressCriteria {
    
      @Spec
      String county;
      
      @Spec
      String city;
    }
    

    The executed SQL will be:

    ... where (x.firstname like ?) or x.county=? and x.city=?
    

    Join

    You can use @Join on fields to filter associated entities. It is important that the relationships between entities are properly defined beforehand. For example:

    @Entity
    class Customer {
    
      @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
      @JoinColumn(name = "order_id")
      private Collection<Order> orders;
    }
    
    @Entity
    class Order {
    
      private String itemName;
    }
    

    If you want to query customers who have purchased specific items, you can define the POJO as follows:

    @Data
    public class CustomerOrderCriteria {
    
      @Join(path = "orders", alias = "o")
      @Spec(path = "o.itemName", value = In.class)
      Collection<String> items;
    }
    

    The executed SQL will be:

    select distinct ... from customer customer0_ 
    inner join orders orders1_ on customer0_.id=orders1_.order_id 
    where orders1_.item_name in (?, ?)
    

    To align with most use cases, the default join type is INNER, and the result is made distinct. You can modify this behavior by setting @Join#joinType or @Join#distinct. For example:

    @Join(joinType = JoinType.RIGHT, distinct = false)
    

    Multi Level Joins

    You can use @Joins to define multi-level joins. For example:

    @Entity
    class Customer {
    
      @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
      @JoinColumn(name = "order_id")
      private Set<Order> orders;
    }
    
    @Entity
    class Order {
        
      @ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
      private Set<Tag> tags;
    }
    
    @Entity
    class Tag {
    
      private String name;
    }
    

    If you want to query customers who have purchased items with specific tags, you can define the POJO as follows:

    @Data
    class CustomerOrderTagCriteria {
    
      @Joins({
        @Join(path = "orders", alias = "o"),
        @Join(path = "o.tags", alias = "t")
      })
      @Spec(path = "t.name", value = In.class)
      Collection<String> tags;
    }
    

    The executed SQL will be:

    select distinct ... from customer customer0_ 
    inner join orders orders1_ on customer0_.id=orders1_.order_id 
    inner join orders_tags tags2_ on orders1_.id=tags2_.order_id 
    inner join tag tag3_ on tags2_.tags_id=tag3_.id 
    where tag3_.name in (?)
    

    Note that the processing of annotations is sequential, so the order of @Joins must match the order of joins.

    For example, in the given scenario, the following definition order is incorrect:

    @Data
    class CustomerOrderTagCriteria {
    
      @Joins({
        @Join(path = "o.tags", alias = "t"), // "o" alias will not exist during the processing of this @Join
        @Join(path = "orders", alias = "o")
      })
      @Spec(path = "t.name", value = In.class)
      Collection<String> tagNames;
    }
    

    Join Fetch

    You can use @JoinFetch at the class level to fetch all lazy associated data at once. For example:

    @Entity
    class Customer {
    
      @OneToMany(fetch = FetchType.LAZY, cascade = CascadeType.ALL)
      @JoinColumn(name = "order_id")
      private Collection<Order> orders;
    }
    
    @Entity
    class Order {
      
      private String itemName;
    }
    

    If you want to fetch the Order entities along with the Customer entity, you can use:

    @JoinFetch(paths = "orders")
    @Data
    class CustomerOrderCriteria {
    
      @Spec
      String name;
    }
    

    The executed SQL will be:

    select distinct 
      customer0_.* ...,
      orders1_.* ...
    from customer customer0_ 
    inner outer join orders orders1_ on customer0_.id=orders1_.order_id 
    where customer0_.name=?
    

    To align with most use cases, the default join type is INNER, and the result is made distinct. You can modify this behavior by setting @FetchJoin#joinType or @FetchJoin#distinct. For example:

    @FetchJoin(joinType = JoinType.RIGHT, distinct = false)
    

    Multi Level Fetch Joins

    You can use @FetchJoins to define multi-level fetch joins. For example:

    @Entity
    class Customer {
    
      @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
      @JoinColumn(name = "order_id")
      private Set<Order> orders;
    }
    
    @Entity
    class Order {
        
      @ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
      private Set<Tag> tags;
    }
    
    @Entity
    class Tag {
    
      private String name;
    }
    

    If you want to fetch the Order and Tag entities along with the Customer entity, you can use:

    @JoinFetches({
      @JoinFetch(paths = "orders"),
      @JoinFetch(paths = "orders.tags")
    })
    @Data
    class CustomerOrderTagCriteria {
    
      @Spec
      String name;
    }
    

    The executed SQL will be:

    select distinct 
      customer0_.* ...,
      orders1_.* ...,
      tags3_.* ...
    from customer customer0_ 
    left outer join orders orders1_ on customer0_.id=orders1_.order_id 
    inner join orders orders2_ on customer0_.id=orders2_.order_id 
    left outer join orders_tags tags3_ on orders2_.id=tags3_.order_id 
    left outer join tag tag4_ on tags3_.tags_id=tag4_.id 
    where customer0_.name=?
    

    Customize Spec Annotation

    Continuing from the example in the section Extending Simple @Spec, let’s take it a step further. Now, we want to make the entity class configurable so that it can be used for entities other than Customer.

    To fulfill this requirement, we need to define additional parameters in the annotation. As a result, the Simple @Spec approach is no longer suitable. Instead, we need to define a new annotation. Here’s the complete code:

    First, we define the annotation:

    @Retention(RetentionPolicy.RUNTIME)
    @Target({ ElementType.FIELD })
    public @interface MaxCreatedTime {
    
      Class<?> from();
    }
    

    Next, we need to implement the logic responsible for handling @MaxCreatedTime. We can extend it by implementing the SpecificationResolver interface:

    public class MaxCreatedTimeSpecificationResolver implements SpecificationResolver {
    
      @Override
      public boolean supports(Databind databind) { 
        // Here, we tell the SpecMapper when to use this resolver
        return databind.getField().isAnnotationPresent(MaxCreatedTime.class);
      }
    
      @Override
      public Specification<Object> buildSpecification(Context context, Databind databind) {
        var def = databind.getField().getAnnotation(MaxCreatedTime.class);
        return databind.getFieldValue()
            .map(value -> subquery(def.from(), value.toString()))
            .orElse(null);
      }
    
      Specification<Object> subquery(Class<?> entityClass, String by) {
        // Here, we provide an example implementation for the subquery
        return (root, query, builder) -> {
          var subquery = query.subquery(LocalDateTime.class);
          var subroot = subquery.from(entityClass);
          subquery.select(
            builder.greatest(subroot.get("createdTime").as(LocalDateTime.class))
          ).where(builder.equal(root.get(by), subroot.get(by)));
          return builder.equal(root.get("createdTime"), subquery);
        };
      }
    }
    

    Next, we add this resolver to the SpecMapper during its construction:

    var mapper = SpecMapper.builder()
          .defaultResolvers()
          .resolver(new MaxCreatedTimeSpecificationResolver())
          .build();
    

    Finally, we define the POJO and convert it to a Specification:

    @Data
    public class CustomerCriteria {
    
      @MaxCreatedTime(from = Customer.class)
      String maxBy;
    }
    
    var criteria = new CustomerCriteria();
    criteria.setMaxBy("firstname");
    
    var spec = mapper.toSpec(criteria, Customer.class);
    repository.findAll(spec);
    

    The executed SQL will be:

    ... where customer0_.created_time=(
      select max(customer1_.created_time) from customer customer1_ 
      where customer0_.firstname=customer1_.firstname
    )
    

    Logging

    To set tw.com.softleader.data.jpa.spec.SpecMapper to logging level debug, which prints more information during the object-to-spec conversion process:

    DEBUG 20297 --- [           main] t.c.softleader.data.jpa.spec.SpecMapper  : --- Spec AST ---
    +-[CustomerCriteria]: my.package.CustomerCriteria
    |  +-[CustomerCriteria.firstname]: @Spec(value=Equals, path=, not=false) -> Equals[path=name, value=matt]
    |  +-[CustomerCriteria.address]: my.package.AddressCriteria (NestedSpecificationResolver)
    |  |  +-[AddressCriteria.county]: @Spec(value=Equals, path=, not=false) -> null
    |  |  +-[AddressCriteria.city]: @Spec(value=Equals, path=, not=false) -> Equals[path=name, value=Taipei]
    |  \-[CustomerCriteria.address]: Conjunction[specs=[Equals[path=city, value=Taipei]]]
    \-[CustomerCriteria]: Conjunction[specs=[Equals[path=name, value=matt], Conjunction[specs=[Equals[path=city, value=Taipei]]]]]
    

    If you prefer to control and set the Logger based on the converted objects, we offer another strategy. By setting the ASTWriterFactory, you can switch to using the Logger of the target object:

    var mapper = SpecMapper.builder()
          .defaultResolvers()
          .astWriterFactory(ASTWriterFactory.impersonation())
          .build();
    

    Limitation

    When SpecMapper searches for fields in a POJO, it only looks for local fields within the current class and does not traverse the hierarchy of classes to find fields. If you have shared fields that you want to use in multiple POJOs, consider using the Nested Specs approach.